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N O N L I N E A R  V I B R A T I O N  M O D E S  OF A N  E L A S T I C  P A N E L  

U N D E R  P E R I O D I C  L O A D I N G  
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The dynamic instability and nonlinear behavior of a nonshallow thin elastic cylindrical panel 
with simply supported rectilinear edges under uniformly distributed periodic load is studied. 
The regions of regular and chaotic dynamics are determined for symmetric and nonsymmetric 
bending modes of the panel. It is shown that depending on the external load frequency, the 
nonsymmetric buckling, which occurs when the load amplitude reaches a critical value, can 
lead to two different dynamic modes. 

The motion of a nonlinear determinate system can be regular or chaotic, depending on the values 
of the control parameters [1, 2]. By the regular motion, the periodic or quasiperiodic mode is meant. If, 
however, the system is very sensitive to initial conditions, for certain values of the control parameters, the 
chaotic mode of motion can occur in which the energy is intensively transferred to the low-frequency region. 
The motion of an elastic panel whose deflections are greater than or comparable with the panel thickness 
is described by a geometrically nonlinear system of equations; therefore, chaotic modes can also be realized 
[3-5] in this system. 

The motion of the panel is described by the following system of geometrically nonlinear equations of 
the shell theory based on the Kirchhoff-Love hypothesis [6, 7]: 
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Here Zr and Z~ are the tangential and normal components of the dynamic load and F1 and F2 are the terms 
containing the following nonlinear terms: 
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where 14/" and V are the deflection and tangential displacement of fixed (Lagrangian) points of the middle 
surface which are normalized to the radius of the undeformed panel R, e = 52/12, 5 = h /R ,  T 2 = E / (p (1  - 
#z)), h and p are the thickness and density of the panel material, respectively, E is Young's modulus, and # is 
Poisson's ratio. The term 7(OW/Ot),  which accounts for structural damping, is introduced into the deflection 
equation. The deflection is positive if directed toward the curvature center, and the tangential displacement 
is positive in the counterclockwise direction. The simply supported boundary conditions at the rectilinear 
edges of the panel are written in the form 

0 2 W  
W - 0 ,  V = 0 ,  Oa 2 - 0  for a = a l ,  a = a 2 .  (2) 

It is assumed that  the panel is immovable at the initial moment of time: 

OW OV 
W = 0 ,  V = 0 ,  Ot = 0 ,  Ot = 0  for t = 0 ,  a l < ~ a ~ < a 2 .  (3) 

The normal component of dynamic load Zn changes periodically in time, whereas the tangential com- 
ponent Zr is equal to zero: 

Zn = A D  sin (a~t), Z~ = 0. (4) 

Here A and w are the amplitude and frequency of the external load, respectively, and D = Eh3/(12(1 - #2)) 
is the flexural rigidity of the panel. The load is assumed to be rigid and independent of the middle-surface 
shape. 

Subject to conditions (2)-(4), system (1) was solved by the finite-difference method with the use of 
second-order implicit difference schemes [7-9]. For analysis of the solution, the signal-power spectrum 
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was constructed, where 12kl 2 is the discrete component of the power spectrum, which depends on the fre- 
quency, X j  is the deflection at the central point of the panel at the moment tj = j A t ,  and At is the time 
step. 

In accordance with the Wiener-Khintchine theorem (with accuracy up to a numerical factor), the 
autocorrelative function Ck was defined as the Fourier transform of the power spectrum at the moment 
tk = k A t  [1, 2]: 
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To analyze the evolution of the signal and its chaotic state, we determined the dynamic and static 
characteristics of the attractor: the Shannon information and the lower bound of the Hausdorff dimensionality 
D2 [1, 2]. To introduce a set of states into the phase space (W, dW/d t ,  d2W/dt2),  the region occupied by the 
at tractor was covered by a grid with the cell size I. Belonging of an attractor point to a fixed cell of the grid 
is understood to be the state of the system. As the dynamic characteristic, we used the average value of the 
increment in the Shannon information [2] 
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J1 J2 
where ~ I n  = In+l - In, In = E Pi log2 Pi, and In+l = E Pi log2 Pi. 

i=1 i=1 
Based on the analysis of the signal, at each moment of time tj we determined the state of the system 

72 and the sets of states /~It and 21,I2 to which the system can change at subsequent moments of time tj+l 
and tj+2. The sets /111 and M2 contain J1 and J2 different states, respectively. In the expressions for the 
information In and I,,+1, the probabilities of transition of the system from the state n to certain states from 
the sets 2~I1 and M2, respectively, are denoted by Pi. If the average value of the increment in the Shannon 
information is positive, the average number of states to which the system can change at a given moment of 
t ime is greater than unity and, hence, the dynamic process is chaotic. If this quantity is equal to zero, the 
transit ion from any state to a subsequent state is unique and the dynamics is regular [2]. The values of J1, 
Js, and Pi were determined by analyzing the a t t ractor  in the space of states of the phase system. 

As a static characteristic of the at tractor ,  the lower bound of the Hausdorff dimensionality determined 
by means of correlation integral [2[ was used: 

Ds = }i~ (ln C(l)/  In l), C(l) = lim (1 /N 2) E O(1 - Ixi - ~cjl ). 
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Here l is the edge length of the cubic cells into which the region occupied by the at tractor  is divided, N is 
the number of points of the attractor,  0 is the Heaviside function, and xi and &j are the radius-vectors of 
the a t t ractor  points in the phase space. The quanti ty D2 was determined as the slope of the linear section 
(outside the saturation region and the region where statistic information is insufficient) of the curve logs/ 

versus log2C(l ) to the logs/axis.  
In accordance with the technique described above, the dynamic behavior of the panel was investigated 

as a function of the amplitude value of the external load at a given frequency. Calculations were performed 
for the following parameters of the panels: 5 = 0.01, p = 4500 kg/m 3, T = 5000 m/see, and 7 = 0.0001. 

Nonlinear Symmetric Vibrations. We consider the calculation results obtained for a panel with the 
curvature parameter  K = 4L2/(Rh) = 4 (2L is the panel span) at which the bending is symmetric [10]. The 
external  load varies according to the harmonic law (4) with a frequency equal to the first natural frequency 
of the elastic panel. Figure 1 shows the deflection at the central point of the panel W versus time t for 
the minimum amplitude of the external load A = 150 that  ensures vibrations in two states of equilibrium. 
An at t ractor  with the lower bound of the Hausdorff dimensionality D2 = 2.15 forms in the phase space. 
Vibrations occur relative to the two stable states of equilibrium. The average increment in the Shannon 
information is positive A f = 0.7236; the power spectrum contains a continuous low-frequency component; 
the autocorretative function decreases on the interval of its definition. According to the criteria considered 

[1, 2], the vibrations are chaotic for these panel and load parameters. 
We now increase the amplitude of the external load up to A = 200 with the panel parameters and the 
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boundary  conditions preserved. Figure 2 shows the deflection W at the central point of the panel versus the 
t ime t. Chaotic splashes of the deflection amplitude are observed at the initial stage of vibrations. Beginning 
with t -- 0.4 sec, the vibration mode tends to a quasiperiodic mode. This follows from the decrease in the 
power of the continuous low-frequency component relative to the power of the external load and the character 
of the autocorrelat ive function, which oscillates about  its slowly changing mean value. For t > 0.4 sec, the 
a t t rac tor  approaches the limit cycle and its dimensionality decreases to D2 --- 1.21, and the average increment 
in the Shannon information is /k i  = 0. An analysis of the Poincare section of the a t t ractor  by the plane 
W -- 0.5 in the three-dimensional phase space shows that  the at t ractor  is compressed in this plane. The 
results show that ,  for the chosen parameters  of the problem, the chaotic mode changes to a quasiperiodic 
mode provided the amplitude of the load is sufficiently large. If the amplitude of vibrations is small and 
does not exceed the panel thickness, quasiperiodic vibrations occur in the system. Thus, if the amplitude of 
the external  load is used as a control parameter ,  the region of chaotic dynamics lies between two regions of 
regular dynamics. 

Nonlinear Nonsymmetric Vibrations. For the curvature parameter  K = 4L2/(Rh) > 9.04 [10], the 
elastic panel executes nonsymmetric vibrations. As an example, we consider the calculation results for 
/x" = 19.6, (i = 0.01, p = 4500 kg /m 3, T = 5000 m/sec,  and 7 = 0.0001. In this case, the first natural 
frequency of the undeformed panel is f l  = 500 Hz. Figure 3 shows the deflection at the central point of the 
panel W versus t ime (a) and the shapes of the panel for different times (b) (curves 1-3 refer to t = 0.01, 0.02, 
and 0.03 sec, respectively). These results were obtained for a frequency of the external load equal to the first 
resonance frequency and the minimum amplitude A = 60 at which the panel snaps. The characteristic feature 
of this mode is tha t  the panel does not snap back. This is due to the fact tha t  the resonance frequencies for 
the two states of equilibrium differ significantly. Namely, for the initial position, the first natural  vibration 
frequency is f l  = 500 Hz, whereas f l  = 100 Hz in the snapped position. Since the panel loses its stability 
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at the resonance frequency, the amplitude of the load is not very large. In the snapped state, the resonance 
frequency does not coincide with the load frequency, which results in regular quasiperiodic vibrations about 
the lower stable position (Fig. 3b). 

As the amplitude of the load gradually increases at a frequency shifted from the resonance frequency, 
the panel snaps and then executes irregular vibrations, reaching the two positions of equilibrium. Figure 
4a shows the power of vibrations at the central point of the panel S versus the vibration frequency f for 
the external-load frequency f l o a d  = 350 Hz and the minimum amplitude A = 70 at which the instability 
occurs. In this case, the amplitude of the critical load is larger and the power supplied is sufficient to provide 
vibrations with the maximum possible amplitude of deflection. The power spectrum of vibrations contains a 
continuous component in the low-frequency region; therefore, the dynamic mode can be classified as a chaotic 
mode. If the load amplitude increases (A = 140), the low-frequency component of the power spectrum 
decreases relative to the frequency of the external load (Fig. 4b). Nevertheless, in view of its presence in the 
power spectrum, the dynamic mode cannot be classified as a quasiperiodic mode. 

This work was performed within the framework of Project No. 244 of the Federal special-purpose 
program "Integration" and was partly supported by the Russian Foundation for Fundamental Research 
(Grant No. 96-01-00484). 
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